多光子显微镜基本参数
  • 品牌
  • Bruker,布鲁克
  • 型号
  • 型号齐全
  • 类型
  • 立体显微镜
多光子显微镜企业商机

2020年,TonmoyChakraborty等人提出了一种加快2PM轴向扫描速度的方法[2]。在光学显微镜中,物镜或样品的缓慢轴向扫描速度限制了体积成像的速度。近年来,通过使用远程聚焦技术或电可调谐透镜(ETL)已经实现了快速轴向扫描;但是,远程聚焦中反射镜的机械驱动会限制轴向扫描速度,ETL会引入球面像差和更高阶像差,从而无法进行高分辨率成像。为了克服这些局限性,该组引入了一种新颖的光学设计,能将横向扫描转换为可用于高分辨率成像的无球差的轴向扫描。该设计有两种实现方式,第一种能够执行离散的轴向扫描,另一种能够进行连续的轴向扫描。具体装置如图3a所示,由两个垂直臂组成,每个臂中都有一个4F望远镜和一个物镜。远程聚焦臂包含一个检流扫描镜(GSM)和一个空气物镜(OBJ1),另一个臂(称为照明臂)由一个水浸物镜(OBJ2)构成。将这两个臂对齐,以使GSM与两个物镜的后焦平面共轭。准直的激光束被偏振分束器反射到远程聚焦臂中,GSM对其进行扫描,进而使得OBJ1产生的激光焦点进行横向扫描。多光子显微镜涉及医学、生物学、化学、物理学、电子学、工程学等学科,生产工艺相对复杂,进入门槛较高。美国进口多光子显微镜原理

美国进口多光子显微镜原理,多光子显微镜

多光子显微镜成像深度深、对比度高,在生物成像中具有重要意义,但通常需要较高的功率。结合时间传播的超短脉冲可以实现超快的扫描速度和较深的成像深度,但近红外波段的光本身会导致分辨率较低。基于多光子上转换材料和时间编码结构光显微镜的高速超分辨成像系统(MUTE-SIM)是由清华大学教授和北京大学彭研究员合作开发的。可实现50MHz的超高扫描速度,突破衍射极限,实现超分辨率成像。与普通荧光显微镜相比,该显微镜经过改进,只需要较低的激发功率。这种超快、低功耗、多光子超分辨率技术在高分辨率生物深层组织成像中具有长远的应用前景。美国多光子显微镜双光子显微镜采用长波长激发。

美国进口多光子显微镜原理,多光子显微镜

多光子激光扫描显微镜行业发展,世界多光子激光扫描显微镜产业主要布局在德国和日本,德国是以徕卡显微系统和蔡司为,而日本以尼康和奥林巴斯公司为,2020年,上述企业占据着世界多光子激光扫描显微镜市场64.44%的市场份额,其发展战略左右着多光子激光扫描显微镜市场的走向。目前世界市场对多光子激光扫描显微镜的需求在增长,中国市场这方面的需求增长更快,未来五年多光子激光扫描显微镜市场的发展在中国将具有很大的发展潜力。

世界多光子激光扫描显微镜产业主要布局在德国和日本,德国是以徕卡显微系统和蔡司为,而日本以尼康和奥林巴斯公司为,2020年,上述企业占据着世界多光子激光扫描显微镜市场64.44%的市场份额,其发展战略左右着多光子激光扫描显微镜市场的走向。目前世界市场对多光子激光扫描显微镜的需求在增长,中国市场这方面的需求增长更快,未来五年多光子激光扫描显微镜市场的发展在中国将具有很大的发展潜力。国内显微镜制造市场目前断层严重。目前我国显微镜行业发展缺乏技术沉淀,20年以上经营积累的企业十分稀缺,深度精密制造、光学重要部件设计及工艺严重制约产业升级。目前中国显微镜中如多光子显微镜、共聚焦扫描和电子显微镜等主要集中在徕卡显微系统、蔡司、尼康、奥林巴斯等国外企业。国内具备生产显微镜能力的企业屈指可数,若国内显微镜企业能打破技术壁垒,切入显微镜市场,企业的生产经营将腾跃至一个更高的格局。全球多光子显微镜主要厂商基本情况介绍,包括公司简介、多光子显微镜产品型号、产量、产值及动态等。

美国进口多光子显微镜原理,多光子显微镜

多光子显微镜因拥有较深的成像深度,和较高的对比度在生物成像中有着重要的意义,但是它通常需要较高的功率。结合时间上展开的超短脉冲可以实现超快的扫描速度和较深的成像深度,但是其本身所利用的近红外波段的光会导致分辨率较低。清华大学陈宏伟教授和北京大学席鹏研究员合作研究,结合了结构光成像和上转化粒子,开发了一种基于多光子上转化材料和时间编码结构光显微镜的高速超分辨成像系统(MUTE-SIM)。它可以实现50MHz的超高的扫描速度,并突破了衍射极限,实现了超分辨成像。相较于普通的荧光显微镜,该显微镜提升了,并且只需要较低的激发功率。这种超快、低功率、多光子的超分辨技术,在分辨率高的生物深层组织成像上有着长远的应用前景。多光子显微镜可以进行深层成像,且具有三维成像的能力,可以应用于拍摄不透明的厚样品。美国多光子显微镜成像区域

国内市场多光子显微镜销售渠道。美国进口多光子显微镜原理

细胞在受到外界刺激时,随着刺激时间的增长,即使刺激继续存在,Ca2+荧光信号不但不会继续增强,反而会减弱,直至恢复到未加刺激物时的水平。对于细胞受精过程中Ca2+荧光信号的变化情况,研究发现,配了在粘着过程中,Ca2+荧光信号未发生任何变化,而配子之间发生融合作用时,Ca2+荧光信号强度却会出现一个不稳定的峰值,并可持续几分钟。这些现象,对研究受精发育的早期信号及Ca2+在卵细胞和受精卵的发育过程中的作用具有重要的意义。在其它一些生理过程如细胞分裂、胞吐作用等,Ca2+荧光信号强度也会发生很强的变化。美国进口多光子显微镜原理

与多光子显微镜相关的**
信息来源于互联网 本站不为信息真实性负责