T5核酸外切酶(T5Exonuclease)具有以下特点和技术应用:1.**降解方向**:T5核酸外切酶按照5'→3'方向降解双链或单链DNA。2.**起始消化位置**:T5核酸外切酶既能从单链或双链DNA的5'末端起始消化,也可以从线性或环状双链DNA的缺口(gap)或缺刻(nick)处起始消化。3.**对超螺旋双链DNA的作用**:T5核酸外切酶无法降解超螺旋双链DNA。4.**单链DNA核酸内切酶活性**:T5核酸外切酶还具有单链DNA核酸内切酶活性。5.**应用领域**:-用于Gibson组装,这是一种在恒温条件下有效连接带有多个重叠序列片段的技术。-从完全连接的环状双链DNA中去除不完全连接产物。-降解碱裂解质粒提取方法中产生的变性DNA,增加超螺旋DNA比例,提高DNA克隆和转染效率。-降解质粒样品中污染的线性化和切刻DNA。6.**操作条件**:推荐在37℃温育30分钟,之后加入EDTA至终浓度为20mM终止反应。7.**储存条件**:-25~-15℃保存,有效期3年。8.**注意事项**:避免起泡或剧烈搅拌、涡旋等操作,以防止本品失活。这些特点和技术应用使得T5核酸外切酶在分子生物学实验中,尤其是在DNA克隆和基因片段组装中,具有重要的应用价值。Cas12a同源物能够识别更简单的PAM序列(如5-TTN),这使得基因组的覆盖率显著提高。Competence-Stimulating Peptide-12261

NLS-Cas9-EGFPNuclease在基因编辑中提高特异性的策略包括:1.**核定位信号(NLS)**:NLS有助于Cas9蛋白快速定位到细胞核,这可以减少Cas9在细胞质中的非特异性结合,从而降低脱靶效应。2.**瞬时表达**:由于NLS-Cas9-EGFPNuclease是作为蛋白质直接递送的,它在细胞内不会经历长时间的表达,这限制了Cas9的活性时间窗口,减少了长时间存在导致的脱靶风险。3.**优化gRNA设计**:精心设计的gRNA可以提高特异性,通过选择与目标基因特异性匹配的gRNA,可以减少Cas9在非目标位点的切割。4.**使用高保真Cas9变体**:一些Cas9变体被设计为具有更高的特异性,通过突变Cas9蛋白的某些氨基酸,可以降低其在非目标位点的活性。5.**荧光标记(EGFP)**:EGFP标签不仅用于追踪和分选,还可以帮助研究者通过荧光激起细胞分选(FACS)富集成功编辑的细胞,从而提高编辑特异性。6.**体外验证**:在实际进行体内基因编辑之前,可以通过体外DNA切割实验验证gRNA的特异性和效率,筛选出比较好的gRNA。7.**使用PAM序列优化**:通过选择具有限制性PAM序列的gRNA,可以减少可能的脱靶位点。

高保真Cas9变体在实际应用中的优势主要体现在以下几个方面:1.**降低脱靶效应**:高保真Cas9变体通过减少与非目标DNA序列的结合,从而降低了基因编辑过程中的脱靶风险。这对于减少基因编辑可能带来的非预期效果至关重要。2.**提高特异性**:通过工程化改造,如SpCas9-HF1、eSpCas9和HypaCas9等变体,通过在DNA相互作用位点引入突变,减少了对目标DNA的非特异性识别和切割。3.**扩展PAM序列兼容性**:一些高保真Cas9变体,如xCas93.7,能够识别多种PAM序列,从而扩展了可编辑基因组区域的范围。4.**提高效果**:在临床中,高保真Cas9变体可以减少由于脱靶效应引起的潜在风险,提高基因的安全性和有效性。然而,高保真Cas9变体也存在一些局限性:1.**编辑效率可能降低**:在提高特异性的同时,可能会有一定的编辑效率。一些高保真变体可能在保持特异性的同时,编辑效率有所下降。2.**结构和功能复杂性**:高保真Cas9变体的结构改造可能增加其结构和功能的复杂性,这可能对实际应用中的稳定性和可预测性带来挑战。3.**成本和可用性**:开发和生产高保真Cas9变体可能需要更多的研究和资源投入,这可能影响其在某些应用中的成本效益。
BstDNA聚合酶在等温扩增中的优势主要包括以下几点:1.**高灵敏度和扩增效率**:BstDNA聚合酶具有链置换能力,能够在恒温条件下快速、高效、特异性地扩增模板。翌圣生物的BstPlusDNAPolymerase灵敏度超高,低至5copies目的基因可测,且始终能比竞品更快达到阈值,扩增速率更快。2.**高dUTP耐受性**:BstPlusDNAPolymerase具有较高的dUTP耐受性,在反应体系中添加dUTP对BstPlusDNAPolymerase的灵敏度及扩增效率无影响,这使得它在防污染系统中表现出色。3.**快速扩增**:使用BstDNA聚合酶的等温扩增技术,如LAMP,可以在15-60分钟内实现109-1010倍的扩增,显示出快速的扩增能力。4.**热稳定性**:BstDNA聚合酶具有较强的热稳定性,能在60-65℃的恒温条件下保持活性,这使得它非常适合于不需要温度循环的等温扩增技术。5.**简化的反应设置**:Bst3.0DNAPolymerase优化了Loop-MediatedIsothermalDNAAmplification(LAMP)反应,简化了反应设置,可以实现单酶RT-LAMP反应。6.**抗抑制剂能力强**:Bst3.0DNAPolymerase即使在高浓度的扩增抑制剂中,包括dUTP,也能展现出强大的性能。

BloodGenomicDNAIsolationKitwithMagneticBeads是一种利用磁珠技术从血液中提取基因组DNA的试剂盒。以下是一些关键特点和应用:1.**高效提取**:该试剂盒采用特殊的磁珠和缓冲体系,能够快速且高效地从100μl至1ml的血液中分离和纯化高质量的基因组DNA。2.**磁珠特性**:独特的磁珠具有很强的核酸亲和力,在特定条件下可以快速分离和纯化核酸。这些磁珠对磁场响应迅速,使得提取过程既安全又便捷。3.**提取过程**:血液样本在裂解液和蛋白酶K的作用下迅速裂解,释放出的基因组DNA与磁珠特异性结合。通过磁分离架的作用,磁珠与溶液快速分离,经过洗涤去除杂质,用洗脱液将基因组DNA从磁珠上洗脱下来。4.**应用广**:提取的基因组DNA可用于多种分子生物学实验,如PCR扩增、酶切、基因分型、Southern杂交、高通量测序、基因组DNA文库构建等。5.**操作简便**:整个抽提过程大约需要50分钟,操作简便,无需使用有毒有害的有机试剂,如酚或氯仿,提高了实验的安全性。6.**高纯度和高回收率**:提取的DNA纯度高,A260/A280通常在1.7-1.9之间,表明蛋白和RNA的污染低。回收率通常超过80%。
FnCas12a需要一个crRNA,而不需要tracrRNA,简化了RNA的设计和构建过程。Competence-Stimulating Peptide-12261
提高SpCas9蛋白在基因编辑中的特异性和效率是CRISPR-Cas9技术发展的关键。根据新的研究进展,以下是一些提高SpCas9特异性和效率的策略:1.**工程化改造**:通过定向进化和蛋白工程的方法,研究人员可以对SpCas9进行改造,以提高其在细胞中的基因编辑活性。例如,JenniferDoudna团队开发的工程化iGeoCas9,通过在WED结构域引入突变,显著提高了基因编辑效率,比野生型GeoCas9高出100倍以上。2.**优化gRNA设计**:合理设计的gRNA可以提高Cas9的特异性,减少脱靶效应。研究人员通过生物信息学工具和实验验证,筛选出与目标DNA序列互补性更强且特异性更高的gRNA。3.**使用高保真Cas9变体**:研究人员开发了高保真Cas9变体,这些变体在保持编辑活性的同时,降低了脱靶风险。例如,通过突变Cas9蛋白的关键氨基酸残基,可以减少其在非目标位点的切割活性。4.**PAM序列的优化**:通过改变Cas9蛋白的PAM序列识别能力,可以扩大其靶向范围,从而提高编辑效率。例如,开发能够识别非典型PAM序列的Cas9变体。5.**递送系统的优化**:使用核糖核的蛋白(RNP)复合物的形式递送Cas9和gRNA,可以提高Cas9蛋白的稳定性和编辑效率。这种方法避免了mRNA或质粒递送可能引起的免疫反应。Competence-Stimulating Peptide-12261
ROR1属胚胎期I型受体酪氨酸激酶,成年后沉默复现于多种实体瘤与血液恶病,成为“病胚”标志物与ADC、CAR-T热门靶点。本品采用HEK293真核表达,覆盖胞外完整Ig-like/Frizzled/Kringle结构域(aa30-406),C端6×His标签经Ni-NTA两步纯化,纯度≥98%,内素<0.05EU/μg,糖基化与天然构象经质谱与圆二色谱双重验证。功能层面,重组ROR1以高亲和力结合Wnt5a(KD=4.7nM),可剂量依赖启动非经典通路,诱导乳腺病细胞迁移;在体外阻断实验中,50ng/mL即可抑制Wnt5a介导的ROR1-FZD复合体形成。His标签支持ELISA、SPR与细胞...