3D打印高性能增材制造技术摆脱了模具制造这一明显延长研发时间的关键技术环节,兼顾高精度、高性能、高柔性,可以快速制造结构十分复杂的零件,为先进科研事业速研发提供了有力的技术手段。在微光学领域,Nanoscribe表示,其3D打印解决方案“破坏和打破以前复杂的工作流程,克服了长期的设计限制,并实现了先进的微光驱动的前所未有的应用。换句话说,PhotonicProfessionalGT系列与您的平均3D打印机不同,因此可用于创建在其他机器上无法生产的功能性光学产品。该系列与正确的材料和工艺相结合,据称允许用户“直接制造具有比标准制造方法,高形状精度和光学平滑表面几何约束的聚合物微光学部件”。如需了解增材制造技术的应用场景请咨询Nanoscribe在中国的子公司纳糯三维科技(上海)有限公司。广东微流道增材制造Photonic Professional GT
Nanoscribe设备专注于纳米,微米和中等尺寸的增材制造。早期的PhotonicProfessionalGT3D打印机设计用于使用双光子聚合生产纳米和微结构塑料组件和模具。在该过程中,激光固化部分液态光敏材料,逐层固化。使用双光子聚合,分辨率可低至200纳米或高达几毫米。另一方面,GT2现在可以在短时间内在高达100×100mm2的打印区域上生产具有亚微米细节的物体,通常为160纳米至毫米范围。此外,使用GT2,用户可以选择针对其应用定制的多组物镜,基板,材料和自动化流程。湖南微纳光刻增材制造PPGT对比传统制造,增材制造有什么优势和特点?
Nanoscribe的PhotonicProfessionalGT2双光子无掩模光刻系统的设计多功能性配合打印材料的多方面选择性,可以实现微机械元件的制作,例如用光敏聚合物,纳米颗粒复合物,或水凝胶打印的远程操控可移动微型机器人,并可以选择添加金属涂层。此外,微纳米器件也可以直接打印在不同的基材上,甚至可以直接打印于微机电系统(MEMS)。双光子灰度光刻技术可以一步实现真正具有出色形状精度的多级衍射光学元件(DOE),并且满足DOE纳米结构表面的横向和纵向分辨率达到亚微米量级。
德国公司Nanoscribe是高精度增材制造技术的排名在前的开发商,也是BICO集团(前身为Cellin)的一部分,推出了一款新型高精度3D打印机,用于制造微纳米级的精细结构。据该公司称,新的QuantumX形状加入了该公司屡获殊荣的QuantumX产品线,其晶圆处理能力使“3D微型零件的批量处理和小批量生产变得容易”。它有望显着提高生命科学、材料工程、微流体、微光学、微机械和微机电系统(MEMS)应用的精度、输出和可用性。基于双光子聚合(2PP),一种提供比较高精度和完整设计自由度的增材制造方法和Nanoscribe专有的双光子灰度光刻(2GL)技术,Nanoscribe认为直接激光写入系统是微加工的比较好选择几乎任何2.5D或3D形状的结构,在面积达25cm²的区域上都具有亚微米级精度。激光增材制造在航空航天、医疗和汽车等领域有广泛应用。
Nanoscribe是一家德国双光子增材制造系统制造商,2019年6月25日,南极熊从外媒获悉,该公司近日推出了一款新型的机器QuantumX。该新的系统使用双光子光刻技术制造纳米尺寸的折射和衍射微光学元件,其尺寸可小至200微米。根据Nanoscribe的联合创始人兼CSOMichaelThiel博士的说法,“Beers定律对当今的无掩模光刻设备施加了强大的限制,QuantumX采用双光子灰度光刻技术,克服了这些限制,提供了前所未有的设计自由度和易用性,我们的客户正在微加工的前沿工作。“Nanoscribe成立于卡尔斯鲁厄理工学院,现在在上海设有子公司,在美国设有办事处。该公司在财务和技术上获得了蔡司的大力支持,蔡司是德国历史非常悠久,规模比较大的光学系统制造商之一。纳米标记系统基于双光子吸收,这是一种分子被激发到更高能态的过程。为了使用双光子工艺制造3D物体,使用含有单体和双光子活性光引发剂的凝胶作为原料。将激光照射到光敏材料上以形成纳米尺寸的3D打印物体,其中吸收的光的强度比较高。PhotonicProfessionalGT是Nanoscribe此前推出的一款产品,在科学研究中得到了广的应用,并在哈佛大学纳米系统中心,加州理工学院,伦敦帝国理工学院,苏黎世联邦理工大学和庆应义塾大学使用。增材制造可实现复杂结构的快速制造。北京工业级增材制造QX
3D打印(3D Printing),又称作增材制造,是一种用digital file (数字文件) 生成一个三维物体的过程。广东微流道增材制造Photonic Professional GT
Nanoscribe的PhotonicProfessionalGT2双光子无掩模光刻系统的设计多功能性配合打印材料的多方面选择性,可以实现微机械元件的制作,例如用光敏聚合物,纳米颗粒复合物,或水凝胶打印的远程操控可移动微型机器人,并可以选择添加金属涂层。此外,微纳米器件也可以直接打印在不同的基材上,甚至可以直接打印于微机电系统(MEMS)。双光子灰度光刻技术可以一步实现真正具有出色形状精度的多级衍射光学元件(DOE),并且满足DOE纳米结构表面的横向和纵向分辨率达到亚微米量级广东微流道增材制造Photonic Professional GT