通过将冷却液强制并集中性的通入到散热器中以冷却主要发热元件021,将冷却液通入电子信息设备02内部以冷却次要发热元件022,从而将主要发热元件021与次要发热元件022分别进行冷却,这样可以根据主要发热元件021的发热量控制冷却液的供给,有效减少冷量的浪费,提高了冷却效果;同时,冷却液在流经散热器时,与散热器之间形成强制对流,有效地强化了冷却液与主要发热元件021的换热效果,增强了单相浸没式液冷系统的冷却性能。为了保证冷却液在流动过程中能够与电子信息设备02上的所有次要发热元件022产生热交换,具体的,当散热器的进液口与供液管路011连通时,散热器的出液口靠近电子信息设备02的进液端023设置,这样,从散热器中流出的冷却液可以从电子信息设备02的进液端023向出液端024流动,冷却液在流动过程中与次要发热元件022进行热交换,增强了换热效果,并避免了在电子信息设备02内形成循环死区;同理,当散热器的出液口与回液管路012连通时,散热器的进液口靠近电子信息设备02的出液端024设置,这样保证了进入散热器的冷却液在电子信息设备02内与所有次要发热元件022均进行了热交换,提高了次要发热元件022的冷却效果,并避免了在电子信息设备02内形成循环死区。显卡液冷机柜连接件。无锡数据中心液冷机柜定制价格
冷却液从散热器中流出后进入电子信息设备内部并吸收次要发热元件产生的热量,或者,也可以先将冷却液导入电子信息设备内部吸收次要发热元件产生的热量,然后进入散热器中吸收主要发热元件产生的热量,从而将主要发热元件与次要发热元件分别进行冷却;冷却液吸收主要发热元件以及次要发热元件产生的热量后温度升高,这部分高温冷却液通过出液管路进入冷却装置中进行放热,温度降低后的冷却液经进液管路再次回到柜体内完成一次循环。可选的,所述冷却装置为空气冷却器、冷却塔、换热器以及空调外机的任意一种。可选的,所述供液管路或所述回液管路上设有循环泵。附图说明图1为本发明实施例提供的一种单相浸没式液冷系统的组成示意图;图2为本发明实施例提供的另一种单相浸没式液冷系统的组成示意图;图3为本发明实施例提供的一种电子信息设备内设置的散热器的连接示意图;图4为本发明实施例提供的另一种电子信息设备内设置的散热器的连接示意图;图5为本发明实施例提供的液冷板的结构示意图。无锡数据中心液冷机柜定制价格智能液冷机柜连接件。
并向出液端024流动,在流动过程中,冷却液与次要发热元件022进行热交换,冷却液吸收次要发热元件022产生的热量后在循环泵05的作用下进入散热器中,再次吸收主要发热元件021产生的热量,吸热后的冷却液从散热器中流出,并经导流管路04流入柜体01,***经回液管路012排出柜体01。为了增强冷却液与次要发热元件022之间的换热效果,散热器的进液口靠近电子信息设备02的出液端024设置,这样保证了进入散热器的冷却液在电子信息设备02内与所有次要发热元件022均进行了热交换,提高了次要发热元件022的冷却效果,并避免了在电子信息设备02内形成循环死区。为了防止冷却液不经电子信息内部直接从柜体01的进液口流向出液口,电子信息设备02与柜体01的内壁之间设有挡液板08,挡液板08介于柜体01的进液口与出液口之间,这样,受挡液板08的阻挡,进入柜体01的低温冷却液必须穿过电子信息内部才能到达柜体01的出液口一侧。散热器的数量可以根据主要发热元件021的数量进行设置,当电子信息设备02内设有多个散热器时,冷却装置还包括设置在导流管路04上的流量处理器07,流量处理器07包括一个总口和与散热器一一对应的多个分口,散热器分别与对应的分口连通。
多个翅片11沿着基板1的长度方向等距间隔分布,翅片11的厚度小于等于基板1的厚度,其作用与实施例二相同,但翅片11之间有更多间隙,故更利于气流的流通。工作原理与实施例一相同,不再赘述。实施例四:请参阅图7,本发明提供的一种实施例:一种服务器机柜密封水冷系统,包括管路和基板1,管路包括进水管3和出水管4,基板1的两端贯通形成中空管状;管路还包括两个两端贯通形成中空管状的过渡管2,其中一个过渡管2的一端与进水管3固定连接且连通,另一端与基板1的一端固定连接且连通;另一个过渡管2的一端与出水管4固定连接且连通,另一端与基板1的另一端固定连接且连通;基板1、过渡管2、进水管3和出水管4的中空部分各处横截面积均相等;基板1内的中空部分的宽度大于进水管3的直径,基板1内的中空部分的厚度小于进水管3的半径,其作用与实施例一相同。进一步,出水管4的外侧固定设置有多个金属环41,金属环41的孔径等于出水管4的外径,金属环41沿着出水管4等距间隔分布,金属环41能够增大出水管4与空气的接触面积,可以使离开出水管4的热水更快通过空气散热。另外金属环41也可用于其它各实施例中的出水管4外侧。工作原理与实施例一相同,不再赘述。实施例五:请参阅图8。 全浸没式液冷机柜连接件。
目前,计算机服务器芯片散热主要采用风冷冷却技术,即用空气来直接冷却电子设备的发热元器件,利用设备元器件之间的间隙和壳体进行热传导、对流和辐射换热,实现发热元件热量向周围环境散热和冷却的目的,风冷冷却技术一般用于服务器热流密度不高的场所,当服务器热流密度高于80w/cm2,风冷所面临的高能耗,局部热岛效应以及噪音问题将非常明显,产品的可靠性也会进一步降低。浸没式液冷技术是液体冷却中效率较高的冷却方式,主要是将服务器电子元器件浸没在不导电的液体中,热量从发热元器件传到冷却液体,然后利用外部流体循环或者蒸发冷却散热传到外部环境中,从而达到高效冷却的效果。浸没式液冷技术根据选择浸没工质不同,可分为单相浸没和相变浸没两种技术。以水和空气为例,10kw的设备,控制设备温升为10度,则需要空气3250m3/h,冷却水为900l/h,两者体积相差275倍。由此可见,风冷冷却不是比较好选择,采用液冷冷却技术远胜于风冷技术。关于液冷技术,大量研究和实际应用主要停留在冷板式液冷服务器,散热冷却效果不理想。技术实现要素:实用新型目的:本实用新型目的是提供一种散热效果好的浸没式液冷机柜。技术方案:本实用新型提供一种浸没式液冷机柜。全浸没式液冷机柜定制。承德全浸没式液冷机柜厂家
全浸没式液冷机柜安装方案。无锡数据中心液冷机柜定制价格
本发明涉及电子信息设备散热技术领域,尤其涉及一种单相浸没式液冷机柜及单相浸没式液冷系统。背景技术:随着科技进步,大数据技术蓬勃发展,对于电子信息设备性能要求越来越高,性能提升必将带来电子元件的发热量和热流密度大幅度增加,若电子元件工作时产生的热量不及时带走,这些元件内部温度将迅速升高,而电子元件工作的可靠性对温度十分敏感,这给传统低效率的风冷技术带来严峻挑战,因此液冷技术逐渐成为高密度电子信息设备的散热技术研究热点。一般单相浸没式液冷技术应用时,只是驱动冷却液从电子信息设备的进液端流入,从电子信息设备的出液端流出,冷却液在流过整个电子信息设备内部时,同时与主要发热元件以及次要发热元件进行热交换,而未针对主要发热元件和次要发热元件进行区分,导致冷量供给不够精确,存在着一定的冷量浪费。另外,由于电子信息设备内部流通截面积较大且发热元件排布杂乱且相互遮挡,这使得冷却液实际流速较低,无法有效充分地与主要发热元件进行换热。技术实现要素:本发明提供一种单相浸没式液冷机柜及单相浸没式液冷系统,用以提高冷却液与主要发热元件的换热效果,并实现冷却液的精确供给,减少冷量的浪费。无锡数据中心液冷机柜定制价格