IMU 全称Inertial Measurement Unit,中文叫惯性测量单元,是用来测量物体加速度、角速度、磁场,高度等的元器件。惯性测量元件包括多种传感器,比如倾角仪、加速度计、陀螺仪、磁力计、气压计等。而市面上一般IMU传感器是由一种或多种惯性测量单元组成,通过传感器融合算法,获得物体的运动、航向、姿态(滚动角、俯仰角和偏航角)等。 一般IMU传感器包括3轴、6轴、9轴甚至10轴IMU传感器,就是不同数量的测量单元组成。其中常见的6轴IMU传感器由三个单轴的加速度计和三个单轴的陀螺仪组成,9轴IMU传感器在3轴加速度计和3轴陀螺仪基础上增加了磁力计。10轴IMU传感器又新增了气压计,用于测量气压高度。无锡凌思科技有限公司为您提供惯性导航,有需求可以来电购买惯性导航!武汉LINS688B惯性导航
从20世纪50年代的液浮陀螺仪到70年代的动力调谐陀螺仪;从80年代的环形激光陀螺仪、光纤陀螺仪到90年代的振动陀螺仪以及研究报道较多的微机械电子系统陀螺仪相继出现,从而推动了惯性传感器不断向前发展。因此对惯性传感器的研究一直是各国惯性技术领域的重点,各种新材料、新技术在惯性传感器研究中都有所体现,随着低成本、高精度的惯性传感器的出现,惯性导航系统将成为通用、低价的导航系统。 较近的传感器技术发展使得机器人和其他工业系统设计实现了凌思性的进步。除了机器人以外,惯性传感器有可能改善其系统性能或功能的应用还包括:平台稳定、工业机械运动控制、安全/监控设备和工业车辆导航等。这种传感器提供的运动信息非常有用,不较能改善性能,而且能提高可靠性、安全性并降低成本。深圳LINS800惯性导航系统无锡凌思科技有限公司致力于提供惯性导航,有需求可以来电购买惯性导航!
VR设备 VR头戴式设备主要使用这些IMU传感器来跟踪你的头部位置,以改变它发出的视频信号。例如,当你向上看时,你的头部实际上是绕X轴旋转的,这将被放置在你的虚拟现实耳机中的IMU传感器的陀螺仪感应到,这反过来将给予你提供天空的视频反馈。当你向下看的时候,你向相反的方向旋转你的头,你就能看到地面。 无人机 IMU传感器的另一个应用是跟踪无人机、直升机和飞机的方向和航向。 通常,这些解决方案使用IMU传感器沿着电子罗盘(又称磁力计)的组合。该组合的技术名称为AHRS传感器。(姿态和航向基准系统) 基本上,加速度计告诉我们无人机相对于地面的角度,陀螺仪使用这些数据作为参考,并计算无人机飞行时的俯仰、偏航和滚动,磁力计告诉我们无人机相对于地球磁场的方向,这样我们就可以在地图上跟踪它!
零偏不稳定性(Bias Instability) IMU传感器的零偏会随着时间发生漂移的现象被称为零偏不稳定性bias instability,也被称为flicker noise。零偏不稳定性通常会在低频下被观察到,而高频的闪烁噪声往往会被白噪声所掩盖。 由闪烁噪声引起的偏差波动通常被建模为随机游走(random walk)。零偏不稳定性测量描述了在固定条件(通常为恒温)下,在指定的时间段内传感器的零偏发生的变化。他是一款陀螺仪传感器或者IMU十分重要的指标。Bias instability通常指定为 1σ 值,单位为°/h,对不太精确的传感器也会采用°/s的单位。无锡凌思科技有限公司是一家专业提供惯性导航的公司,欢迎您的来电!
由于陀螺仪输出的角速度是瞬时量,而角速度在姿态平衡上是不能直接使用的,需要角速度与时间积分计算角度,由此得到的角度变化量与初始角度相加,就得到目标角度,其中积分时间Dt越小,输出角度就越精确,但陀螺仪的原理决定了它的测量基准是自身,并没有系统外的参照物,加上Dt是不可能无限小的,所以积分的累积误差会随着时间流逝迅速增加,较终导致输出角度与实际不符,所以陀螺仪只能工作在相对较短的时间尺度内,单独工作一段时间后,得到的数据就会偏差非常大,所以实际应用中,都会把陀螺仪与其他定位系统相融合,不断矫正。无锡凌思科技有限公司惯性导航服务值得放心。深圳LINS800惯性导航系统
无锡凌思科技有限公司致力于提供惯性导航,有需要可以联系我司哦!武汉LINS688B惯性导航
固态惯性传感器有着潜在的成本、尺寸、重量等优势,其在系统中的应用也必然激增。随着器件成本的降低、小尺寸传感器的出现,凌思应用也出现了许多新的应用领域。 惯性导航系统是随着惯性传感器的发展而发展起来的一门导航技术,它完全自主、不受干扰、输出信息量大、输出信息实时性强等优点使其在凌思航行载体和民用相关领域获得了普遍应用。惯导系统的精度、成本主要取决于陀螺仪和加速度传感器的精度和成本,尤其是陀螺仪其漂移对惯导系统位置误差增长的影响是时间的三次方函数,而高精度的陀螺仪制造困难,成本很高,因此惯性技术界一直在寻求各种有效方法来提高陀螺仪的精度,同时降低系统成本。武汉LINS688B惯性导航