抱负积分球的条件:A、积分球内外表为一完整的几何球面,半径处处持平;B、球内壁是中性均匀漫射面,关于各种波长的入射光线具有相同的漫反射比;C、球内没有任何物体,光源也看作只发光而没有什物的抽象光源。影响积分球丈量精度的因素:A、球内壁是均匀的抱负漫射层,服从朗伯定则;B、球内壁各点的反射率持平;C、球内壁白色涂层的漫射是中性的;D、球半径处处持平,球内除灯外无其他物体存在;所以,积分球内壁起球,剥落,黄变都会影响其丈量精度。总的来说,积分球是一种非常有用的光学器件,普遍应用于光源测试、颜色测量、光学测量等领域。积分球结构简单,但其在光学测量中的作用却不可小觑。Spectra-FT精细可调光谱太阳光模拟器供应商
积分球辐射源是一种非常优异的定标光源,其输出的辐亮度面均匀性和稳定性是普通光源无法比拟的。在需要使用面光源的领域,被普遍用于光学探测器的实验室定标,空间光学遥感仪器发射前的地面辐射定标。因此辐射源的稳定性、准确性对于辐射定标非常关键,直接影响到被定标仪器探测结果。影响积分球辐射源输出稳定性和均匀性的主要因素包括积分球光源供电的恒流源稳定性、积分球内部材料的反射率稳定性和球内挡板设置,三者会影响积分球输出光通量、辐亮度变化和均匀性。便携式均匀光源测试方法积分球可以用于照明设计中的光线模拟,通过放置光源在球内,可以模拟不同方向的光照效果。
积分球配置的选择:除了考虑积分球尺寸、内部漫反射涂层以外,积分球配置也是选配积分球系统的关键且*具挑战的参数之一。积分球开口数目和探测器开口数目多少?例如有的积分球设有18个开口端。是否内部配置挡板,如果需要,挡板尺寸多大?挡板防止直接光源的光饱和或损坏探测器,必须尽可能小,以减少阴影。在高发散激光二极管测量中,可以消除挡板,并且探测器移动到靠近入口端口的位置,以消除头一个光热点,并较大限度地减少饱和或损坏光电二极管的可能性。
球体倍增因子对表面反射率极为敏感。选择漫反射涂层或材料会对给定设计的辐射度产生很大影响(如图3所示)。所示的两种涂层都具有高反射率,在350至1350 nm范围内的反射率超过95%。因此,对于相同的积分球,人们可能预期不会有明显的辐射度增加。然而,辐射度的相对增加大于反射率的相对增加,其系数等于球体倍增因子。虽然其中一种涂层在一定波长范围内比另一种提供2%到15%的反射率增加,但相同的积分球设计将导致辐射度增加40%至240%。较大的增加发生在1400纳米以上的近红外光谱区域。积分球内壁的材料选择对光线的反射效率至关重要。
学科发现,光学的起源在西方很早就有光学知识的记载,欧几里得(Euclid,公元前约330~260)的<反射光学>(Catoptrica)研究了光的反射;阿拉伯学者阿勒·哈增(AI-Hazen,965~1038)写过一部<光学全书>,讨论了许多光学的现象。历史发展,光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。人类对光的研究,较初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦时代),中国的《墨经》中记录了世界上较早的光学知识。它有八条关于光学的记载,叙述影的定义和生成,光的直线传播性和小孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。积分球的应用,为光学测量领域带来了更高的测量精度。Spectra-UT 超可调光谱辐射定标测试仪
积分球的概念,源自古希腊数学家阿基米德,他通过积分球体积求解球体表面积。Spectra-FT精细可调光谱太阳光模拟器供应商
球体倍增因子,辐射度方程分为两部分。头一部分近似等于漫射表面的辐射度。第二部分是一个无量纲的量,可以被称为球体倍增因子球体倍增因子考虑了多次反射引起的辐射增加。图1说明了球体倍增因子的幅度及其对开口端系数和球体表面反射率的相关关系。预测积分球内部光通量密度的一种简化直观的方法可能是简单地将入射光通量除以积分球的总表面积。然而,球体倍增因子的效果是,积分球体的辐射度至少比这种简单直观的方法大一个数量级。一个方便的经验法则是,对于大多数真实积分球(0.94 < p < 0.99;0.02 < f < 0.05),球体倍增因子在10 ~ 30之间。Spectra-FT精细可调光谱太阳光模拟器供应商