样品制备,纳米力学测试纳米纤维的拉伸测试前需要复杂的样品制备过程,因此FT-NMT03纳米力学测试具备微纳操作的功能,纳米力学测试利用力传感微镊或者微力传感器可以对单根纳米纤维进行五个自由度的拾取-放置操作(闭环)。可以使用聚焦离子束(FIB)沉积或电子束诱导沉积(EBID)对样品进行固定。纳米力学测试这种结合了电-机械测量和纳米加工的技术为大多数纳米力学测试应用提供了完美的解决方案。SEM/FIB集成,得益于FT-NMT03纳米力学测试系统的紧凑尺寸(71×100×35mm),该系统可以与市面上绝大多数的全尺寸SEM/FIB结合使用,在样品台上安装和拆卸该系统十分简便,只需几分钟。此外,由于FT-NMT03纳米力学测试的独特设计(无基座、开放式),纳米力学测试体系统可以和电子背向散射衍射仪(EBSD)和扫描透射电子显微镜(STEM)技术兼容。面向未来,纳米力学测试将继续拓展人类对微观世界的认知边界。广州纺织纳米力学测试模块

英国:国家物理研究所对各种纳米测量仪器与被测对象之间的几何与物理间的相互作用进行了详尽的研究,绘制了各种纳米测量仪器测量范围的理论框架,其研制的微形貌纳米测量仪器测量范围是0.01n m~3n m和0.3n m~100n m。Warwick大学的Chetwynd博士利用X光干涉仪对长度标准用的波长进行细分研究,他利用薄硅片分解和重组X光光束来分析干涉图形,从干涉仪中提取的干涉条纹与硅晶格有相等的间距,该间距接近0.2nm,他依此作为校正精密位移传感器的一种亚纳米尺度。Queensgate仪器公司设计了一套纳米定位装置,它通过压电驱动元件和电容位置传感器相结合的控制装置达到纳米级的分辨率和定位精度。深圳原位纳米力学测试系统纳米力学测试能够揭示材料表面的微观结构与性能之间的关系。

将近场声学和扫描探针显微术相结合的扫描探针声学显微术是近些年来发展的纳米力学测试方法。扫描探针声学显微术有多种应用模式,如超声力显微术(ultrasonic force microscopy,UFM)、原子力声学显微术(atomic force acoustic microscopy,AFAM)、超声原子力显微术(ultrasonic atomic force microscopy,UAFM),扫描声学力显微术(scanning acoustic force microscopy,SAFM)等。在以上几种应用模式中,以基于接触共振检测的AFAM 和UAFM 这两种方法应用较为普遍,有时也将它们统称为接触共振力显微术(contact resonance force microscopy,CRFM)。
原位纳米力学测试系统(nanoindentation,instrumented-indentation testing,depth-sensing indentation,continuous-recording indentation,ultra low load indentation)是一类先进的材料表面力学性能测试仪器。该类仪器装有高分辨率的致动器和传感器,可以控制和监测压头在材料中的压入和退出,能提供高分辨率连续载荷和位移的测量。包括压痕硬度和划痕硬度两种工作模式,主要应用于测试各种薄膜(包括厚度小于100纳米的超薄膜、多层复合膜、抗磨损膜、润滑膜、高分子聚合物膜、生物膜等)、多相复合材料的基体本构和界面、金属阵列复合材料、类金刚石碳涂层(DLC)、半导体材料、MEMS、生物医学样品(包括骨、牙齿、血管等)和生物材料、等在nano水平上的力学特性,还可以进行纳米机械加工。通过探针压痕或划痕来获得材料微区的硬度、弹性模量、摩擦系数、磨损率、断裂刚度、失效、蠕变、应力释放、分层、粘附力(结合力)、存储模量、损失模量等力学数据。纳米力学测试还可以评估材料在高温、低温等极端环境下的性能表现。

在AFAM 测试系统开发方面,Hurley 等开发了一套基于快速数字信号处理的扫频模式共振频率追踪系统。这一测试系统可以根据上一像素点的接触共振频率自动调整扫描频率的上下限。随后,他们又开发出一套称为SPRITE(scanning probe resonance image tracking electronics) 的测试系统,可以同时对探针两阶模态的接触共振频率和品质因子进行成像,并较大程度上提高成像速度。Rodriguez 等开发了一种双频共振频率追踪(dual frequency resonance tracking,DFRT) 的方法,此种方法应用于AFAM 定量化成像中,可以同时获得探针的共振频率和品质因子。日本的Yamanaka 等利用PLL(phase locked loop) 电路实现了UAFM 接触共振频率追踪。利用纳米力学测试,可以评估纳米材料的可靠性和耐久性。广州纺织纳米力学测试模块
利用纳米力学测试,可以对纳米材料的弹性形变和塑性形变进行精细分析。广州纺织纳米力学测试模块
除了采用弯曲振动模式进行测量外,Reinstadtler 等给出了探针扭转振动模式测量侧向接触刚度的理论基础。通过同时测量探针微悬臂的弯曲振动和扭转振动,Hurley 和Turner提出了一种同时测量各向同性材料杨氏模量、剪切模量和泊松比的方法。Killgore 等提出了利用软探针的高阶模态进行AFAM 定量化测试的方法,可以使探针施加在样品上的力减小到10 nN,极大地扩展了这一方法的应用范围。Killgore 和Hurley提出了一种新的脉冲接触共振的方法,将接触共振与脉冲力模式相结合,不只能测量探针的接触共振频率和品质因子,还可以测量针尖样品之间黏附力的大小。广州纺织纳米力学测试模块