自从1976年美国犹他大学的VALI和SHORTHILL等人成功研制第1个光纤陀螺(fiber-optic gyroscope, FOG)以来,光纤陀螺已经发展了30多年。在30多年的发展过程中,许多基础技术(如光纤环绕制技术)等都得到了深入地研究。 光纤陀螺仪的突出优点使其在航天航空、机载系统和凌思技术上的应用十分普遍,因此受到用户特别是军方的高度重视,以美、日、法为主体的光纤陀螺仪研究工作已取得了很大的进展。光纤陀螺仪研究工作大部分集中在干涉式(IFOG),只有少数公司仍在研究谐振式光纤陀螺。光纤陀螺的商品化是在上世纪90年代初才陆续展开,中低精度的光纤陀螺(特别是干涉式光纤陀螺)己经商品化,并在许多领域内得到了应用,目前,高精度光纤陀螺仪的开发和研制正走向成熟阶段。无锡凌思科技有限公司是一家专业提供光纤陀螺仪的公司,欢迎新老客户来电!LINS-F500光纤陀螺仪惯性测量单元厂家
光纤陀螺即光纤角速度传感器,它是各种光纤传感器中较有希望推广应用的一种。光纤陀螺和环形激光陀螺一样,具有无机械活动部件、无预热时间、不敏感加速度、动态范围宽、数字输出、体积小等优点。除此之外,光纤陀螺还克服了环形激光陀螺成本高和闭锁现象等致命缺点。 光纤陀螺是一种用于惯性导航的光纤传感器。 因其无活动部件——高速转子,称为固态陀螺仪。这种新型全固态的陀螺仪将成为未来的主导产品,具有普遍的发展前途和应用前景。 原理 武汉LINS-F3X90光纤陀螺仪惯性测量单元价格光纤陀螺仪,就选无锡凌思科技有限公司。
光纤陀螺工作原理本质上利用光学原理来检测角速度。它将光纤绕成一个线圈,并将其固定在一个回转的载体上,当载体旋转时,光纤将绕线圈旋转,从而形成光纤陀螺效应。 光纤陀螺的工作原理是,当载体旋转时,光纤会因为绕线圈旋转而产生应力,这会引起光纤内部的变化,从而改变光纤的折射率。当折射率发生变化时,光纤内部会产生一种弹性变形现象,从而形成一种特殊的电磁效应,从而产生一种电信号。根据这种电信号的大小,可以确定载体的角速度。
干涉型光纤陀螺仪(I-FOG),即凌思代光纤陀螺仪,目前应用较普遍。它采用多匝光纤圈来增强SAGNAC效应,一个由多匝单模光纤线圈构成的双光束环形干涉仪可提供较高的精度,也势必会使整体结构更加复杂; 谐振式光纤陀螺仪(R-FOG),是第二代光纤陀螺仪,采用环形谐振腔增强SAGNAC效应,利用循环传播提高精度,因此它可以采用较短光纤。R—FOG需要采用强相干光源来增强谐振腔的谐振效应,但强相干光源也带来许多寄生效应,如何消除这些寄生效应是目前的主要技术障碍。 受激布里渊散射光纤陀螺仪(B-FOG),第三代光纤陀螺仪比前两代又有改进,目前还处于理论研究阶段。 按光学系统的构成:集成光学型和全光纤型光纤陀螺。 按结构:单轴和多轴光纤陀螺。 按回路类型:开环光纤陀螺和闭环光纤陀螺。无锡凌思科技有限公司是一家专业提供光纤陀螺仪的公司,有需求可以来电购买光纤陀螺仪!
随着科技的不断进步,光纤陀螺仪的性能将不断提升,应用领域也将进一步拓展。未来,光纤陀螺仪有望在更多领域发挥重要作用,如智能穿戴设备、物联网、虚拟现实等。同时,随着光纤陀螺仪技术的不断创新和优化,其成本也将逐渐降低,使得更多领域能够享受到高精度导航技术的红利。 总之,光纤陀螺仪作为一种高精度、高可靠性的角速度测量设备,在现代导航和控制系统中具有普遍的应用前景。随着技术的不断发展和优化,光纤陀螺仪将为各个领域的进步和发展提供有力支持,开启高精度导航新时代。光纤陀螺仪,就选无锡凌思科技有限公司,有想法的可以来电购买光纤陀螺仪!北京LINS-F70光纤陀螺仪惯性测量单元价格
光纤陀螺仪,就选无锡凌思科技有限公司,用户的信赖之选。LINS-F500光纤陀螺仪惯性测量单元厂家
光纤陀螺的发展是日新月异的。不使用是科学家热心于此,许多大公司出于对其市场前景的看好,也纷纷加入到研究开发的行列中来。由于光纤陀螺在机动载体和凌思领域的应用甚为理想,因此各国的军方都投入了巨大的财力和精力。 从产业发展的长远角度来看,光纤陀螺在有名重要领域的应用,具有巨大的市场空间。这是因为光纤陀螺具有无机械活动部件、无预热时间、不敏感加速度、动态范围宽、数字输出、体积小等优点,特别适合在凌思领域中进行高精度、高稳定性的角速度测量。因此,光纤陀螺在有名重要领域中的应用,不使用不会过剩,反而有着广阔的发展前景。LINS-F500光纤陀螺仪惯性测量单元厂家