与石墨烯量子点类似,氧化石墨烯量子点也具备一些特殊的性质。当GO片径达到若干纳米量级的时候将会出现明显的限域效应,其光学性质会随着片径尺寸大小发生变化[48],当超过某上限后氧化石墨烯量子点的性质相当接近氧化石墨烯,这就提供了一种通过控制片径尺寸分布改变氧化石墨烯量子点光响应的手段。与GO类似,这种pH依赖来源于自由型zigzag边缘的质子化或者去质子化。同样,这也可以解释以GO为前驱体通过超声-水热法得到的石墨烯量子点的光发射性能,在蓝光区域其光发射性能取决于zigzag边缘状态,而绿色的荧光发射则来自于能级陷阱的无序状态。通过控制氧化石墨烯量子点的氧化程度,可以控制其发光的波长。这一类量子点的光学性质类似于GO,这说明只要片径小于量子点,都会产生同样的光学效应,也就是在结构上存在一个限域岛状SP2杂化的碳或者含氧基团在功能化过程中引入的缺陷状态。氧化石墨可以用于提高环氧树脂、聚乙烯、聚酰胺等聚合物的导热性能。多层氧化石墨资料
多层氧化石墨烯(GO)膜在不同pH水平下去除水中有机物质的系统性能评价和机理研究。该研究采用逐层组装法制备了PAH/GO双层膜,对典型单价离子(Na+,Cl-)和多价离子(SO42-,Mg2+)以及有机染料(亚甲蓝MB,罗丹明R-WT)和药物和个人护理品(三氯生TCS,三氯二苯脲TCC)在反渗透膜系统中通过GO膜的行为进行研究。结果发现,在pH=7时,无论其电荷、尺寸或疏水性质如何,GO膜能够高效去除多价阳离子/阴离子和有机物,但对于单价离子的去除率较低。传统的纳滤膜通常带负电,且只能去除带有负电荷的多价离子和有机物。随着pH的变化,GO膜的关键性质(例如电荷,层间距)发生***变化,导致不同的pH依赖性界面现象和分离机制,一些有机物(例如三氯二苯脲)的分子形状由于这种有机物与GO膜的碳表面的迁移性和π-π相互作用而极大地影响了它们的去除。多层氧化石墨资料同时具有良好的生物相容性,超薄的GO纳米片很容易组装成纸片或直接在基材上进行加工。
氧化石墨烯/还原氧化石墨烯在光电传感领域的应用,其基本依据是本章前面部分所涉及到的各种光学性质。氧化石墨烯因含氧官能团的存在具备了丰富的光学特性,在还原为还原氧化石墨烯的过程中,不同的还原程度又具备了不同的性质,从结构方面而言,是其SP2碳域与SP3碳域相互分割、相互影响、相互转化带来了如此丰富的特性。也正是这些官能团的存在,使得氧化石墨烯可以方便的采用各种基于溶液的方法适应多种场合的需要,克服了CVD和机械剥离石墨烯在转移和大面积应用时存在的缺点,也正是这些官能团的存在,使其便于实现功能化修饰,为其在不同场景的应用提供了一个广阔的平台。
氧化石墨烯经还原处理后,对于提高其导电性、比表面等大有裨益,使得石墨烯可以应用于对于导电性、导热性等要求更高的应用中。在还原过程,含氧官能团的去除和控制过程本身也可成为石墨烯改性的一种方式,根据还原方式的不同得到的石墨烯也具有不同的特性和应用场景。例如,通过热还原方式得到的还原氧化石墨烯结构、形貌、组分可通过还原条件进行适当的调控。Dou等1人介绍了在氩气流下在1100-2000°C的温度范围内进行热处理得到的石墨烯结构和吸附性能的研究。所得到石墨烯粉体材料的表面积增加至超过起始前驱体材料四倍,对氧化石墨烯进行热还原处理提高了氧化石墨烯的热学性能,赋予了氧化石墨烯材料热管理方面的应用。氧化石墨烯的表面官能团与水中的金属离子反应形成复杂的络合物。
光学材料的某些非线性性质是实现高性能集成光子器件的关键。光子芯片的许多重要功能,如全光开关,信号再生,超快通信都离不开它。找寻一种具有超高三阶非线性,并且易于加工各种功能性微纳结构的材料是众多的光学科研工作者的梦想,也是成功研制超高性能全光芯片的必由之路。超快泵浦探针光谱表明,重度功能化的具有较大SP3区域的GO材料在高激发强度下可以出现饱和吸收、双光子吸收和多光子吸收[6][50][51][52],这种效应归因于在SP3结构域的光子中存在较大的带隙。相反,在具有较小带隙的SP2域中的*出现单光子吸收。石墨烯在飞秒脉冲激发下具有饱和吸收[52],而氧化石墨烯在低能量下为饱和吸收,高能量下则具有反饱和吸收[51]。因此,通过控制GO氧化/还原的程度,实现SP2域到SP3域的比例调控,可以调整GO的非线性光学性质,这对于高次谐波的产生与应用是非常重要的。石墨原料片径大小、纯度高低等以及合成方法不同,因此导致所合成出来的GO片的大小有差异。哪些氧化石墨生产企业
GO具有独特的电子结构性能,可以通过荧光能量共振转移和非辐射偶极-偶极相互作用能有效猝灭荧光体。多层氧化石墨资料
GO作为一种新型的药物载体材料,以其良好的生物相容性、较高的载药率、靶向给药等方面得到广泛的关注。GO作为递送药物的载体,它不仅可以负载小分子药物,也可以与抗体、DNA、蛋白质等大分子结合,如图7.2所示。普通的有机药物很多都含有π结构,而这些药物的水溶性都非常差,而GO具有较好的亲水性,因此可以借助分散性较好的GO基材料来解决这个问题,即将上述药物负载到GO基材料上,形成GO-药物混合物材料。这对改善难溶***物的水溶性,降低药物不良反应以及提高药物稳定性和生物利用度等方面有非常重要的研究意义。多层氧化石墨资料