AOI的光线照射有白光和彩色光两类设备,白光是用256层次的灰度,彩色是用红光,绿光,蓝光,光线照射至焊锡/元器件的表面,之后光线反射到镜头中,产生二维图像的三维显示,来反映焊点/元器件的高度和色差。人看到和认识物体是通过光线反射回来的量进行判断,反射量多为亮,反射量少为暗。AOI与人判断的原理相同。AOI从镜头数量来说有单镜头和多镜头,这只是技术方案实现的一种选择,很难说那种方式就一定好,因为单镜头通过多个光源的不同角度照射也能得到很好的检测图像。特别是针对无铅焊接的表面比较粗糙,会产生形状不同的焊点,容易形成气泡,并且容易出现零件一端翘立的特点,新的AOI设备也都进行了适应性的硬件和算法的更新。 伴随着元器件的微型化、细间距化等密度特征越来越明显,生产品质以及产能的需求不断扩增。炉前AOI原理
AOI检测的工作逻辑可以分为图像采集阶段(光学扫描和数据收集),数据处理阶段(数据分类与转换),图像分析段(特征提取与模板比对)和缺陷报告阶段这四个阶段(缺陷大小类型分类等)为了支持和实现AOI检测的上述四个功能,AOI设备的硬件系统包括了工作平台,成像系统,图像处理系统和电气系统四个部分,是一个集成了机械,自动化,光学和软件等多学科的自动化设备AOI的图像采集系统主要包括光电转化摄影系统,照明系统和控制系统三个部分因为摄影得到的图像被用于与模板做对比,所以获取的图像信息准确性对于检测结果非常重要,可以想象一下,如果图像采集器看不清楚或看不到被检测物体的特征点,那么也就无法谈到准确的检出。 在线aoi检测机AOI是将电路板上的器件或者特征(比如焊点)捕捉成像。
AOI检测设备中常用的红绿蓝LED光源。特殊波长光源一般是指红外或紫外波长光源,一些特殊材料在可见光范围内吸收差别不大,灰阶变化不明显时可以考虑采用特殊波长光源,比如说利用紫外光能量高可以激发荧光材料的原理,检测具有荧光发光特性物质微残留时紫外光源就是一种比较有效的手段,因材料成分与红外光谱有对应关系的原理,红外光源对不具有发光性质的有机化合物残留缺陷检出就有很大的作用,甚至可以实现成分分析。特殊光源中,利用偏振光与物体相互作用后偏振态的变化,利用光学干涉原理的白光干涉(whitelightinterferometry)在特定缺陷检测中的得到了应用,例如通过相干光的干涉图案计算出对应的相位差和光程差,可以测量出被测物体与参考物体之间的差异,且分辨率与精度为可以达到亚波长,测量三维物体形貌与高度也正成为AOI检测的新需求。(下图为侧光源与同轴光源实例)
AOI的工作方式与SMT当中SPI和印刷机中使用的视觉系统相同,通常使用设计规则检查(DRC)和模式识别。DRC方法根据一些给定的规则检查电路图形(所有的线应该在焊点处结束,所有的引线应该至少,所有的引线应该至少,等等)。该方法能从算法上保证待测电路的正确性,且具有制作简单、算法逻辑简单、处理速度快、程序编辑量小、数据占用空间小等特点,因此被很多人采用。但该方法确定边界的能力较差。图形识别方法是将存储的数字图像与实际图像进行比较。根据完整的印刷电路板或根据模型建立的检验文件进行检验,或根据计算机轴辅助设计中编制的检验程序进行检验。其准确性取决于所采用的发牌率和检验程序,一般与电子测试系统相同,但采集的数据量大,对数据的实时处理要求较高。模式识别方法利用实际设计数据代替DRC中已建立的设计原则,具有明显的优势。AOI软件运算法则很多,有灰度相关法、边缘识别法、固态建模法、统计外形建模法等。
AOl具有元器件检测、PCB板检测、焊接元器件检测等功能。AOI检测系统用于零部件检测的一般程序是对已安装部件的印刷线路板进行自动计数,并开始检查;检查印刷线路板的引线侧,确保引线端对齐、弯曲正确;检查是否有缺件、错件、损坏件、检查安装的IC和分立器件的类型、方向和位置,检查IC器件上的标记印刷质量。如果AOI发现有缺陷的部件,系统将向操作员发送一个信号,或触发处理程序这机器能自动除去有缺陷的零件。该系统对缺陷进行分析,向主机提供缺陷的类型和频率,并对制造过程进行必要的调整。AOI检测的效率和可靠性取决于所使用软件的完整性。AO还具有易于使用、易于调整、不需要编写可视化系统算法的优点。AOI目前使用的电动机分线性电动机、伺服电动机和步进电动机3种。深圳新一代AOI检测设备
存在的主要问题是,当一些检查对象是不可见的,或是在PCB上存在一些干扰使得图像变得模糊或隐藏起来了。炉前AOI原理
本系统采用的卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网(FeedforwardNeuralNetworks),是深度学习(deeplearning)的表示算法之一。卷积神经网络仿造生物的视知觉(visualperception)机制构建,可以进行监督学习和非监督学习。作为图像识别领域的算法之一,卷积神经网络在学习数据充足时有稳定的表现。针对本系统所处理的大规模图像分类问题,卷积神经网络将用于提取图像的判别特征,再通过分类器进行学习和识别。画面显示:1、主图画面都有显示器件框,便于观察器件是否被识别;2、根据底板颜色可以自由选择器件框颜色;3、可依据客户需求,自由定义器件中文名;4、不良器件图静态显示;程序制作灵活性:1、无需设置参数;2、在线抓拍首件板系统辅助做程序,且支持持续补充学习,学习后自动建模比例更高(80%+);---自动框图器件种类多(60+),比例高。3、支持中文、英文、中英文混合输入;4、批量复制、粘贴、剪切、删除等支持快捷键操作。---硬件条件和安装尺寸不发生变化。 炉前AOI原理
深圳爱为视智能科技有限公司是一家有着雄厚实力背景、信誉可靠、励精图治、展望未来、有梦想有目标,有组织有体系的公司,坚持于带领员工在未来的道路上大放光明,携手共画蓝图,在广东省等地区的机械及行业设备行业中积累了大批忠诚的客户粉丝源,也收获了良好的用户口碑,为公司的发展奠定的良好的行业基础,也希望未来公司能成为*****,努力为行业领域的发展奉献出自己的一份力量,我们相信精益求精的工作态度和不断的完善创新理念以及自强不息,斗志昂扬的的企业精神将**深圳爱为视智能科技供应和您一起携手步入辉煌,共创佳绩,一直以来,公司贯彻执行科学管理、创新发展、诚实守信的方针,员工精诚努力,协同奋取,以品质、服务来赢得市场,我们一直在路上!