AOI自动光学检测设备有个比较大的缺点是有些灰阶或是阴影明暗不是很明显的地方,比较容易出现误判的情况,这些或许可以使用不同颜色的灯光来加以判别,但较麻烦的还是那些被其他零件遮盖到的元件以及位于元件底下的焊点,因为传统的AOI只能检测直射光线所能到达的地方,像是屏蔽框肋条或是其边缘底下的元件,往往就会因为AOI检测不到而漏掉。总之,AOI自动光学检测设备虽然好用但确实也有些先天上的限制,不过可以用在即时的SMT初步品质分析,并马上回馈SMT的品质状况,让SMT制程作业加以改善,的确可以有效提高SMT的产出良率。传统的同类检测设备对于一些微小结构检测和细微的损伤检测难以做到面面俱到。广东在线AOI编程
运用高速高精度视觉处理技术自动检测PCB板上各种不同帖装错误及焊接缺陷。PCB板的范围可从细间距高密度板到低密度大尺寸板,并可提供在线检测方案,以提高生产效率,及焊接质量。通过使用AOI作为减少缺陷的工具,在装配工艺过程的早期查找和消除错误以实现良好的过程控制。早期发现缺陷将避免将坏板送到随后的装配阶段,AOI将减少修理成本将避免报废不可修理的电路板。自动光学检查(AOI为工业自动化有效的检测方法,使用机器视觉做为检测标准技术,大量应用于LCD/TFT、晶体管与PCB工业制程上,在民生用途则可延伸至保全系统。自动光学检查是工业制程中常见的代表性手法,利用光学方式取得成品的表面状态,以影像处理来检出异物或图案异常等瑕疵,因为是非接触式检查,所以可在中间工程检查半成品。AOI是较近才兴起的一种新型测试技术,但发展迅速,很多厂家都推出了AOI测试设备。以SMT检测为例,当自动检测时,机器通过摄像头自动扫描PCB,采集图像,测试的焊点与数据库中的合格的参数进行比较,经过图像处理,检查出PCB上缺陷,并通过显示器或自动标志把缺陷显示/标示出来,供维修人员修整。炉前AOI测试AOI检测原理是采用摄像技术将被检测物体的反射光强以定量化的灰阶值输出,分析判定缺陷并进行分类的过程。
AOI(AutomaticOpticInspection)的全称是自动光学检测,是基于光学原理来对焊接生产中遇到的常见缺陷进行检测的设备,如在线监测检测PCBA板卡(PCBA是英文Printedcircuitboard+assembly的简称,也就是说PCB空板经过SMT上件,再经过DIP插件的整个制作过程,简称PCBA板卡)。越来越多的工厂配备AOI检测设备来保证产品的质量,其基本原理是通过光的反射来检查如BGA等元件贴装是否正确,焊接是否良好,是否有漏贴、反向或短路现象等不良。在经过AOI检测出现不良时,需要现场工作人员进行目测判定,判定后的良品,通过手动修改检测结果为合格,继续后面的生产,而不良品则进行维修。然而,当后段反馈SMT不良时,偶尔发现比较直白不良如漏件、反件、错件,这些不良在AOI检测中有报出,可是被现场操作人员误判而流入了后续生产中。
光电转化器可以分为CCD(chargeCouplingdiode)和CMOS(complementarymetaloxidesemiconductor)两种。因为制作工艺与设计不同,CCD与CMOS传感器工作原理主要表现为数字电荷传送的方式的不同,工作原理如下图所示,CCD采用硅基半导体加工工艺,并设置了垂直和水平移位寄存器,电极所产生的电场推动电荷链接方式传输到模数转换器。这样的结构与设计很难集成很多的感光单元,制造成本高且功耗大;而CMOS采用无机半导体加工工艺,每像素设计了额外的电子电路,每个像素都可以被定位,而无需CCD中那样的电荷移位设计,对图像信息的读取速度远远高于CCD芯片,因光晕和拖尾等过度曝光而产生的非自然现象的发生频率要低得多,价格和功耗比CCD光电转化器也低,但其缺点是半导体工艺制作的像素单元缺陷多,灵敏度会有一些问题,同时,为每个像素电子电路提供所需的额外空间不会作为光敏区域。芯片表面上的光敏区域部分(定义为填充因子)小于CCD芯片。从理论上讲,这个原因导致可以收集的图像信息光子数会有所减少,所以,CMOS光电转化元件一般需要搭配高亮度光源,噪音也比较大。 插件炉前检测可以利用数据库实时保存检测的状态和结果,帮助、分析产品出错和误检原因。
AOI系统集成技术牵涉到关键器件、系统设计、整机集成、软件开发等。AOI系统中必不可少的关键器件有图像传感器(相机)、镜头、光源、采集与预处理卡、计算机(工控机、服务器)等。图像传感器常用的是各种型号的CMOS/CCD相机,图像传感器、镜头、光源三者组合构成了大多数自动光学检测系统中感知单元,器件的选择与配置需要根据检测要求进行合计设计与选型。光源的选择(颜色、波长、功率、照明方式等)除了分辨与增强特征外,还需考虑图像传感器对光源光谱的灵敏度范围。镜头的选择需要考虑视场角、景深、分辨率等光学参数,镜头的光学分辨率要和图像传感器的空间分辨率匹配才能达到比较好的性价比。一般情况下,镜头的光学分辨率略高于图像传感器的空间分辨率为宜,尽可能采用黑白相机成像,提高成像分辨能力。图像传感器(相机)采用面阵或线阵需根据具体情况而定,选型时需要考虑的因素有成像视场、空间分辨率、小曝光时间、帧率、数据带宽等。 采用高分辨率工业相机和智能图像分析,检测电子电路板上插件元器件多、错、漏、反等缺陷。广东在线AOI检测设备
现市面上的AOI的制程分调试型和学习型两种。广东在线AOI编程
AOI检测的工作逻辑可以分为图像采集阶段(光学扫描和数据收集),数据处理阶段(数据分类与转换),图像分析段(特征提取与模板比对)和缺陷报告阶段这四个阶段(缺陷大小类型分类等)为了支持和实现AOI检测的上述四个功能,AOI设备的硬件系统包括了工作平台,成像系统,图像处理系统和电气系统四个部分,是一个集成了机械,自动化,光学和软件等多学科的自动化设备AOI的图像采集系统主要包括光电转化摄影系统,照明系统和控制系统三个部分因为摄影得到的图像被用于与模板做对比,所以获取的图像信息准确性对于检测结果非常重要,可以想象一下,如果图像采集器看不清楚或看不到被检测物体的特征点,那么也就无法谈到准确的检出。 广东在线AOI编程
深圳爱为视智能科技有限公司位于石岩街道洲石路奋达科技园二期2号楼2层206。公司业务分为智能视觉检测设备等,目前不断进行创新和服务改进,为客户提供良好的产品和服务。公司将不断增强企业重点竞争力,努力学习行业知识,遵守行业规范,植根于机械及行业设备行业的发展。爱为视凭借创新的产品、专业的服务、众多的成功案例积累起来的声誉和口碑,让企业发展再上新高。